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The population structure of social species has important conse-
quences for both their demography and transmission of their
pathogens. We develop a metapopulation model that tracks two
key components of a species’ social system: average group size
and number of groups within a population. While the model is
general, we parameterize it to mimic the dynamics of the Yellow-
stone wolf population and two associated pathogens: sarcoptic
mange and canine distemper. In the initial absence of disease,
we show that group size is mainly determined by the birth and
death rates and the rates at which groups fission to form new
groups. The total number of groups is determined by rates of fis-
sion and fusion, as well as environmental resources and rates of
intergroup aggression. Incorporating pathogens into the models
reduces the size of the host population, predominantly by reduc-
ing the number of social groups. Average group size responds in
more subtle ways: infected groups decrease in size, but uninfected
groups may increase when disease reduces the number of groups
and thereby reduces intraspecific aggression. Our modeling ap-
proach allows for easy calculation of prevalence at multiple scales
(within group, across groups, and population level), illustrating
that aggregate population-level prevalence can be misleading
for group-living species. The model structure is general, can be
applied to other social species, and allows for a dynamic assess-
ment of how pathogens can affect social structure and vice versa.
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Many vertebrate species live in social groups that shape be-
havioral interactions and demographic processes, particu-

larly exposure to pathogens and their transmission. The social
structure of groups varies considerably between species: at one
end of this spectrum are diffuse, seasonal aggregations, as seen
in migrating birds and many species of tropical fish; at the other
end are social carnivores such as wolves (Canis lupus), wild dogs
(Lycaon pictus), and lions (Panthera leo), in which groups hold
territories for long time periods and both actively avoid and at-
tack each other. The population dynamics of social species
operate at the within-group and between-group scales, and the
product of these interactions generates population-level dy-
namics. This modular population structure presents challenges
to pathogen fitness in that behavior of group members minimizes
contact and transmission rates between groups of hosts; thus, a
pathogen must persist within each social group until an inter-
group transmission event occurs (1–8).
There are several important analogies between this type of

dynamic and those of metapopulations (9, 10)—in order for a
pathogen to persist in the population, it must balance tradeoffs
between virulence, infectious period, and transmission within
and between groups (2, 6, 8, 11–13). The persistence of host
groups depends on individual birth and death rates, group fission
and fusion dynamics, and how often competing groups attack
each other. These rates may be different in the presence of
pathogens, and the pathogen could potentially modify within-
group social dynamics. To quantify the effects of pathogens,

we must first understand the drivers of host social system dy-
namics in the absence of pathogens—we develop a flexible and
analytically tractable model framework for this. We then add
different types of pathogens to the model and compare meta-
population dynamics in the presence of pathogens and between
different pathogens.
Our central aim is to address the following question: “How do

social and infectious disease dynamics interact in group-living
mammals?” We answer this question by developing a hybrid
form of metapopulation models that explicitly consider within-
group dynamics of a hypothetical “average group” as well as the
dynamics of the population of groups. We seek an understanding
of the direct connections between a population’s vital rates,
pathogen characteristics, group sizes, and number of groups in
the population. Previously, socially structured disease models
have assumed a static group structure and subsequently exam-
ined how networks of groups impact disease dynamics (6, 8, 14).
This type of framework does not capture the impact of the
pathogens on group structure and abundance (i.e., dynamics of
the nodes themselves). For instance, mortality of some members
within a social group can cause group dissolution and failed re-
production (e.g., ref. 15). Additionally, group size may influence
contact among susceptible and infected individuals through dis-
persal and fission–fusion. The model framework we have de-
veloped allows us to explore this and compare the dynamics of
the host population with and without pathogens.

Significance

How do social and infectious disease dynamics interact in
group-living mammals? A significant cost to group living is
increased transmission of pathogens. When a pathogen in-
vades a group, members will be more vulnerable to mortality,
Allee effects, and, ultimately, group extinction. The presence of
a pathogen reduces the size of the population by reducing the
number of social groups, allowing uninfected groups to grow
larger from a reduction in intergroup aggression. Concomi-
tantly, Allee effects are exacerbated in infected groups; this
reduces the probability of pathogen persistence as infected
groups die out more rapidly. Social structuring changes prev-
alence across scales and influences pathogen invasion and
persistence. The models described here provide a framework
for understanding the dynamics of these interactions.
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While the initial temptation might be to develop a detailed
simulation model that tracks the abundance of every individual
in each group, such a model would quickly become specific to the
system under study, and the effects and interactions between
parameters would be harder to distinguish. We prefer to adopt
an approach that simplifies model structure in a way that pro-
vides general insights that can be used to reconsider patterns in
empirical data or to focus data collection on ways that might
falsify these patterns. We explore these issues and use demo-
graphic data from two decades of Yellowstone wolf research to
structure and parameterize a general model framework within
which different host–pathogen systems could be examined
(Table 1).
Wolf social structure is characterized by highly cohesive, ma-

trilineal groups, similar to many canid and primate species.
When interactions between these territorial social groups occur,
they often involve high levels of aggression that may lead to fa-
talities (16–18). Most previous work on carnivore sociality has
focused on the costs and benefits of living in a social group
(19–22). Other than predator–prey models, there are relatively
few studies that model the population dynamics of social carni-
vores, and these models have generally lacked the social struc-
ture of these populations (23, 24). Additionally, Allee effects
have been observed in social carnivores such as wild dog and wolf
populations (25, 26). Social groups may be subjected to Allee
effects at small group size; this will lead to declines in recruit-
ment and survival, which can have ramifications for group and
population dynamics (27–32).
We initially present the underlying core model structure and

then expand this framework to consider several key extensions:
1) Allee effects that cause the growth rate of small groups to
slow, or even collapse, so the whole population will also decline
when average group size becomes too small for individual groups
to persist; 2) compartmental disease models that incorporate two
types of pathogens that can be characterized by SIS (S = sus-
ceptible, I = infected); and 3) SIR (S = susceptible, I = infected,
R = recovered) frameworks. The disease models are based on
two monitored infectious diseases in the Yellowstone wolf pop-
ulation: mange and canine distemper virus (Canine morbillivirus,
henceforth distemper) (33, 34). Mange is a skin disease caused
by the mite Sarcoptes scabiei, and it is a relatively slow pro-
gressing infection that leads to hair loss, emaciation, and mor-
bidity (35). Hosts can be reinfected with mange after clearance
(36), and the dynamics act very much like a microparasite with
rapid multiplication on the host and no specialized transmission
stages; thus, we used an SIS framework for this disease. In
contrast, canine distemper virus is a highly transmissible patho-
gen that causes an acute, highly immunizing infection with high
juvenile mortality (33, 37); to characterize the dynamics of this
second type of pathogen, we developed an SIR framework.

Methods
Social Groups Model. The foundation for the social groups model is the dy-
namic interaction between mean group size, g, and number of groups, G.
Traditionally, group or population size is regulated through a logistic
growth framework that asymptotes at a carry capacity set a priori as K (e.g.,
ref. 38). Instead, we use a structure where the population equilibria emerge
from the interaction between the model’s underlying birth and death rates
and its density dependent terms (i.e., fission and resource limitation). This
allows us to derive algebraic expressions in order to better appreciate how
interactions at different scales determine group size and total number of
groups, the product of which is total population.

There have been a number of previous approaches to model group size as
an emergent property based on individual behavior or ecological factors
(39–41). Other studies have followed groups through time (42) or have es-
timated group size for specific populations (43, 44). The principal aim of this
study is to generalize group dynamics in the simplest way, allowing us to
derive tractable analytical solutions for both average group size and number
of groups.

Group size is primarily determined by the interaction between fission rate,
f, and the per capita birth rate, b, and death rate, d. Initially, we assume all
females in a group breed, as is the case for social ungulates. We subse-
quently modify the birth term and assume that only one or two females
breed in any social group, as occurs in many carnivore species. In both cases
we assume that hosts die at a constant rate, d, that is independent of group
size. Fission is the process of individuals dispersing or emigrating out of a
group and is a defining characteristic of many social carnivores such as Af-
rican wild dogs, African lions, and spotted hyenas (Crocuta crocuta). How-
ever, for other social species, particularly ungulates, fission may occur on a
faster timescale and may result in the group splitting (45, 46)—this can be
accounted for by varying fission, f, and fusion rates (c, see below). We as-
sume the fission rate of the group increases with group size as a density
dependent function, fg2/(gf + g): fission increases as group size exceeds some
critical number, gf, and mortality rates increase at a rate, e, as the number of
groups, G, increases; this is in accordance with previous studies (47–50). The
dynamics of the initial group in the population can initially be written as
follows:

dg=dt = (b − d)g − fg2/(gf + g) − eGg. [1]

Fission creates a transient population of individuals,w, who meet at rate c, to
create new groups. We use an equation that captures the dynamics of in-
dividuals that fission from an extant group, join a transient class, and then
meet one of two fates: 1) censored from the population (die or emigrate) at
normal death rate, d; or 2) form a new group at rate c. Here, dw/dt repre-
sents the dynamics of transient individuals that have fissioned from an in-
creasing number of groups, G, and c is the rate that transients combine to
form new groups:

dw=dt = fg2G/(gf + g) −w(d + c). [2]

Fission tends to operate on a much faster timescale than the other demo-
graphic rates included in the model—the time from fission to forming a new
group is about 30 d for wolves in Yellowstone, while packs persist from 3 to
over 20 y. Therefore, we assume the dynamics of this equation collapse
down to give a transient population of individuals, w* = fg2G/(gf + g)(d + c).
This equation for the transient population at equilibrium is substituted into

Table 1. Host–pathogen systems that could be examined using our model framework

Host(s) Pathogen Reference

Lions (Panthera leo) Canine distemper virus 14, 64
Wild dogs (Lycaon pictus) Rabies, canine distemper virus 52, 65, 66
White-tailed deer (Odocoileus virginianus), Reindeer (Rangifer

tarandus)
Chronic wasting disease 67, 68

Bighorn sheep (Ovis canadensis) Pneumonia (Mycoplasma ovipneumoniae) 69, 70
Bats (e.g., Desmodus rotundus) Rabies 71
Red fox (Vulpes vulpes) Sarcoptic mange 72
Seals (e.g., Pagophilus groenlandicus) Phocine distemper virus 73
Small ruminants (i.e., sheep, goats) Peste des petits ruminants virus 74
European badgers (Meles meles) Bovine tuberculosis 75
Chimpanzees (Pan troglodytes verus) Leprosy 76

2 of 10 | PNAS Brandell et al.
https://doi.org/10.1073/pnas.2020023118 A metapopulation model of social group dynamics and disease applied to Yellowstone

wolves

D
ow

nl
oa

de
d 

at
 P

al
es

tin
ia

n 
T

er
rit

or
y,

 o
cc

up
ie

d 
on

 N
ov

em
be

r 
30

, 2
02

1 

https://doi.org/10.1073/pnas.2020023118


www.manaraa.com

the first half of the equation (Eq. 3), thereby replacing the simpler term in
this equation for group formation (cw), and describes the changes in the
number of groups, G. Thus, c/(c + d) is the proportion of dispersing, transient
individuals that contribute to new groups. The dynamics of the total number
of groups is determined by the rate at which groups are created by fission,
cw, and the rate at which group mortality increases within an area, eG2.
Thus, e is a density dependent rate describing the persistence time of groups
and captures background mortality, group dissolution, resource limitation
(e.g., food and den sites), and harvest.

dG=dt = fg2Gc
(c + d)(gf + g) − eG2. [3]

This can readily be solved to give an expression for the carrying capacity of the
environment as defined by the number of groups that inhabit it:

G* = ( cfg2

(c + d)(gf + g))/e. [4]

The individuals that form new groups change the size of the average group,
so we need to expand the equation for the initial group (Eq. 1) by adding
individuals back into average group size. To achieve this, the terms in fg2 are
reorganized to give a modified equation for average size of all groups:

dg=dt = (b − d)g − fg2 d
(c + d)(gf + g) − eGg. [5]

The dynamics produced by this framework are subtly different from those of
a homogeneous population with density dependent dynamics (Fig. 1 A and B

and SI Appendix, Fig. S1 A and B); the number of groups (rather than the
number of individuals) increases and asymptotes in a logistic fashion. The total
population size initially increases almost linearly as changes in the number of
groups are offset by slow decreases in average group size as the population
gets larger and competition for resources increases. The total population has a
tendency to overshoot before equilibrating at a population size, K, which is
the product of G* and g*: K = g*G* = N*.

This basic groups model captures the observed dynamics of herbivore
herds and fish shoals where intergroup aggression isminimal. This framework
needs to be adapted for territorial predators, such as wolves and lions, in
which a major source of mortality comes from groups attacking and killing
individuals in different groups. The addition of an intergroup aggression
term, a, allows us to characterize the rate at which groups attack each other.
Intergroup aggression is a function of the number of groups, G, and we
assume aggression increases linearly with the number of groups rather than
exponentially (SI Appendix, Fig. S3B). The intraspecific mortality that occurs
during aggressive interactions reduces both mean group size and the
number of groups. Eqs. 5 and 3 now become the following:

dg=dt = g(b − d) − fg2/((gf + g) d
(c + d)) − (a + eG)g, [6]

dG=dt = Gfg2c/((gf + g)(c + d)) − (a + eG)G. [7]

The two equations can again be solved analytically at dg/dt = dG/dt = 0 to
give expressions for the number of groups and average group size at
equilibrium:

Fig. 1. Panel plots displaying population and group dynamics produced by the metapopulation models. (A) Basic model dynamics showing mean group size
(dots), number of groups (dashes), and total population (lines) through time (Eqs. 6 and 7). (B) A plot of zero growth isoclines and the trajectory for the basic
model; the arrows indicate rate of change of population at different points in gG space. (C) A plot comparing the model including aggression (black) and
observed Yellowstone National Park wolf population data (blue), where Eq. 6 includes a set number of female breeders. The data reflect the northern portion
of Yellowstone from 1995 to 2016. (D) The stable equilibrium for social groups without and with an Allee effect (A = 2); the zero-growth isoclines for group
size and number of groups are illustrated by filled circles, and trajectories that include an Allee effect are open triangles. The arrows indicate the trajectory
and annual rate of change in abundance without an Allee effect. See SI Appendix, Table S1 for parameter values used.

Brandell et al. PNAS | 3 of 10
A metapopulation model of social group dynamics and disease applied to Yellowstone
wolves

https://doi.org/10.1073/pnas.2020023118

PO
PU

LA
TI
O
N

BI
O
LO

G
Y

D
ow

nl
oa

de
d 

at
 P

al
es

tin
ia

n 
T

er
rit

or
y,

 o
cc

up
ie

d 
on

 N
ov

em
be

r 
30

, 2
02

1 

https://www.pnas.org/lookup/suppl/doi:10.1073/pnas.2020023118/-/DCSupplemental
https://www.pnas.org/lookup/suppl/doi:10.1073/pnas.2020023118/-/DCSupplemental
https://www.pnas.org/lookup/suppl/doi:10.1073/pnas.2020023118/-/DCSupplemental
https://doi.org/10.1073/pnas.2020023118


www.manaraa.com

g* = −d ±
̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅
d2 − 4c(b−d)(c+d)

f

√
2c

With G*  as  ( cfg2

(c  +   d) − a)/e.

Inspection of these two equations tells us that group size is determined by the
birth and death rates and the rate at which groups fission to form new groups
(SI Appendix, Figs. S5 and S7). The total number of groups is dependent on
these rates as well and declines with both rates of intergroup aggression and
resource abundance. Overall, population dynamics are dependent upon
birth, fission, and extinction rates, although these processes operate dif-
ferently within and between groups. Unless stated otherwise, all social
groups model simulations illustrated below utilized parameter values de-
rived from the Yellowstone wolf population data in SI Appendix, Table S1.

The dynamics of the “social carnivore” model (Eqs. 6 and 7) are more
restrained than those of the simpler “social ungulate model” (Eqs. 3 and 5)
such that the presence of the aggression term reduces the tendency for the
population to overshoot its final abundance, and the number of groups and
average group size settle more rapidly to equilibrium. This pattern of pop-
ulation growth initial overshoot followed by decline to steady abundance
was observed in the Yellowstone wolf population following their reintro-
duction in 1995 (Fig. 1C). For Yellowstone wolves, equilibria values settled to
g > g0 and G > G0 (Fig. 1C). When initial conditions are above carrying ca-
pacity, the opposite dynamics occur in that g and G smoothly drop below
equilibrium and then increase and stabilize. The nontrivial equilibrium for
g* and G* is a stable focus (Fig. 1 B and D).

Allee Effect. The interactions between Allee effects and pathogens have not
been explored in population models as they have been considered to operate
independently.We can account for the positive density dependence observed
in small social groups by adding a term that captures an Allee effect that
reduces recruitment when group size is small (SI Appendix, Fig. S4). The
parameter A enters into the within-group dynamics equation as a term that
modifies the underlying birth rate b(g/(g + A)). When g = A, this term re-
duces group birth rate by 50%; when g > A, the Allee term will approach
unity and group growth rate will be minimally affected by Allee effects (SI
Appendix, Fig. S4); when g < A, the net Allee term will approach zero, re-
ducing group birth rate and creating an unstable equilibrium below which
the group will collapse. The addition of a small to moderate Allee term
slightly reduces equilibrium group size and number compared to the cor-
responding core groups model (Fig. 1D). Systems with the Allee term and
high birth rates overshoot mean group size and number of groups and then
settle at a lower equilibrium than their corresponding core groups
models—this results in less-stable dynamics and a longer time to equilibrium.
Significant Allee effects cause the population to crash as all groups have the
same structure and dynamics and recruitment is not large enough to over-
come death, fission, and mortality rates in the small group sizes. This is an
artifact of assuming all groups are identical. In particular, the size of groups
containing pathogens may decrease to levels in which Allee effects become
more important for the dynamics of infected groups than for those without
infection.

Adding Pathogens to the Model. We used a compartmental framework to
implement infectious diseases into the core social groups model. Specifically,
the equations for the number of groups andmean group size were expanded
to consider SIR individuals and groups.We track the number of groups in each
class as well as the composition of the average group in terms of the numbers
of SIR individuals it contains. For example, susceptible groups become in-
fected groups when one individual in the group is infectious, but because all
individuals within the group do not become infected immediately, both
susceptible and infected individuals will coexist within the average infected
group.Here,wemakeanadditionalmodification tomore closely correspondwith
social carnivores and only allow one (or two) females to breed in any social group
(Bf), so the proportion of females breeding in the group is now 1/g (or 2/g).

S, I, and R groups move from one class to the next due to infection during
intergroup encounters or by recovery as the infection dies out in the group,
leaving only resistant and susceptible hosts (who either escaped infection or
were recently born). Within groups, βW is the frequency dependent pathogen
transmission rate between group members. Pathogen transmission between
groups occurs at a frequency dependent, pathogen-specific rate, βB, where βB =
βW*a, the product of the between-group contact rate and within-group trans-
mission rate. Infected individuals can have a pathogen-induced mortality rate, α,
and individuals recover from infection with rate σ. Infection is lost when an in-
dividual recovers or dies (σ + α). We have reduced the magnitude of e to allow a
larger population size than the wolf population within Yellowstone as the park
is too small to support continuous infection with these pathogens (51).

We will initially consider the SIS model used for nonimmunizing infections
such asmange.G and I are the state variables for the number of groups that are
susceptible or infected, g and s are the mean number of susceptible individuals
in susceptible and infected groups, respectively, and i is the mean number of
infected individuals in infected groups. We assume that infected individuals do
not reproduce, but this can be easily modified. An Allee effect is also included
for illustrative purposes in the SIS model but not in the SIR model.

dg=dt = Bfb(g=(g + A)) − (d + a)g − fg2/((gf + g) d
(c + d))− eg(G + I), [8]

ds=dt = Bfb(s=(s + τ))((s + i)=(s + i + A)) − (d + a)s + σi

− fs(s + i)/((gf + s + i) d
(c + d)) − es(G + I) − βW

si
(1 + s + i), [9]

di=dt = βW
si

(1 + s + i) (d + a + α + σ)i − fi(s + i)/((gf + s + i) d
(c + d))

− ei(G + I), [10]

dG=dt = cfg2G/((gf + g)(c + d)) − aG − eG(G + I) + I
σ

(1 + i) − βBIG=(G + I),
[11]

dI=dt = βBIG=(G + I) + cf(s + i)2I/((gf + s + i)(c + d)) − aI − eI(G + I)

− I
(σ + α)
(1 + i) . [12]

We have a dummy variable τ that is set to a very low value (0.001); this
stops the birth rate of infected groups going to infinity when no susceptible
hosts, s, are present. It is sufficiently small to not reduce the fecundity of
breeding females in these groups. We can calculate the pathogen’s basic
reproductive number within each group, R0, or the number of secondary
infections arising from a single infectious individual in a completely

susceptible group: βW s
(1 +  s +  i)(d  +  σ  +  α).

For pathogens such as canine distemper virus that result in immunological
resistance to infection, we developed an SIR model, where R is a new state
variable for the number of recovered groups. Additional new state variables
include sR as the mean number of susceptible individuals in recovered groups
and rR as the mean number of recovered individuals in recovered groups. sR
only occurs when infected hosts recover from infection at a rate, σ, and
immunity is then lost at a rate, φ, and they then return to the susceptible
class. Since these infections tend to be acute, we assume that infected in-
dividuals do not reproduce or fission.

The SIR model in Fig. 2 can be described by Eqs. 13–21:

dg=dt = Bfb − (d + a)g − fg2/((gf + g) d
(c + d)) − eg(G + I + R), [13]

ds=dt = Bfb((s + r)=(s + r + τ)) − (d + a)s + φr

− fs((s + i + r)/(gf + s + i + r)) d
(c + d) − es(G + I + R) − βW

si
(1 + s + i),

[14]

di=dt = βW
si

(1 + s + i) − (d + a + α + σ)i − ei(G + I + R), [15]

dr=dt = σi − (d + a + φ)r − fr((s + i + r)/(gf + s + i + r)) d
(c + d)

− er(G + I + R), [16]

dsR=dt = Bfb((sR + rR)=(sR + rR + τ)) + φrR − (d + a)sR−

fsR(sR + rR)/((gf + sR + rR) d
(c + d)) − esR(G + I + R), [17]

drR=dt = σI=(1 + i) − (d + a + φ)rR − frR(sR + rR)/((gf + sR + rR) d
(c + d))

− erR(G + I + R),
[18]
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dG=dt = cfg2G/((gf + g)(c + d)) + R
ϕ

(1 + rR) − aG − eG(G + I + R)

− βBIG/(G + I + R), [19]

dI=dt = βBI(G + (R sR
(sR + rR)))/(G + I + R) − eI(G + I + R) − I(a + (σ + α)

(1 + i)),
[20]

dR=dt = I
σ

(1 + i) + cf(sR + rR)2R/((gf + sR + rR)(c + d)) − eR(G + I + R)

− R(a + ϕ

(1 + rR)) − βBI(R sR
(sR + rR))/(G + I + R).

[21]

For the SIR model, the basic reproductive number of the pathogen within a

group of susceptibles is R0 = βW s
(1 +  s +  i  +  r)(d  +  σ  +  α).

Transition rates between different group compartments have to be
modified by group size as persistence time and speed of infection dynamics
change as group size changes. Specifically, the rate at which recovery converts
an I group to an R group slows down with an increase in the number of
infected individuals (as does R to S)—these terms are expressed by scaling
terms in the denominator (e.g., (1 + i), (sR + rR)). The term in ((sR + rR)/(sR + rR +
τ)) in Eqs. 14 and 17 prevents the birth rate jumping to infinity before the

resistant groups form from infected groups that have recovered. Similarly, the
term (sR/(sR + rR)) in Eqs. 20 and 21 represents the reduced susceptibility to
infection in R groups due to the presence of immunologically resistant indi-
viduals in these groups. This can be thought of as a subtle metapopulation
form of within-group “herd immunity.” We assume that both within-group
and between-group transmission is frequency dependent increasing to an

asymptote (e.g., within groups: si
(1+s+i[+r])).

Results
The model structure we have developed provides a number of
important insights into the dynamics of hosts whose populations
are divided into social groups. In general, the SIS model was able
to maintain pathogens in the population while pathogens were
more likely to fade out in the SIR model. For short-lived, im-
munogenic SIR-type pathogens, three mechanisms are important
for persistence of the pathogen: 1) low contact rates between
host groups such that between-group transmission events are
rare (i.e., “social trapping”); 2) highly virulent infections kill too
many hosts within one group before successful between-group
transmission can occur; and 3) when pathogens are highly
transmissible, the population quickly becomes dominated by in-
dividuals resistant to reinfection and the chain of transmission
stutters and breaks.

Fig. 2. Flow diagram for the SIR groups model. Boxes represent the three group compartments, and ovals within the boxes represent the mean number of
individuals in each compartment within their respective group. Group-level processes are denoted with open (unfilled/white) arrows; if the arrow outline is
solid, the group transitions to a different compartment (e.g., S to I); if the arrow outline is dashed, the process occurs in groups in that compartment (e.g., I
group fissions and creates more I groups). Filled arrows represent within-group processes (e.g., i individual recovers to r). Intergroup aggression is an un-
derlying process that is primarily driven by the number of groups, and it effectively controls pathogen transmission rates because it is the only form of in-
tergroup contact in these models (i.e., βB = βW*a). Infected and recovered individuals can also contribute to new susceptible individuals through birth, but
these arrows are not included for simplicity.
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The influence of pathogens on group dynamics is considerable.
The presence of an SIS or an SIR pathogen reduces the number
of groups in the population and the number of individuals in
infected groups. Counterintuitively, it allows the uninfected
groups in the population to grow slightly larger (Fig. 3). This
occurs because the rate of intraspecific aggression between
groups is reduced when the presence of the pathogen decreases
the number of groups, which then allows healthy surviving
groups to increase in size as they suffer lower rates of aggression.
The total population typically settles to a smaller size with SIS
pathogens because the chronic nature of these infections in-
creases mortality for a substantial proportion of the population
for an extended period of time (Fig. 4 and SI Appendix, Fig. S1 C
and D). This effect is less pronounced in the case of the SIR
pathogen, as the population size that persists in the presence of
an SIR type pathogen is larger than for one infected by an SIS
pathogen as infected individuals are able to clear their infections
quickly (if they survive) and become immunologically resistant
(for a period of time) (Fig. 4). Because the SIS pathogen system
is dynamically simpler than the SIR pathogen system, it settles to
equilibrium relatively quickly. The SIR pathogen is more un-
stable and tends to produce epidemic cycles that seem to fade
out when the population is divided into social groups (SI Ap-
pendix, Fig. S1 E and F). We found that susceptible and recov-
ered groups in a population with an SIR pathogen were able to
grow larger when the pathogen was present because reductions
in the numbers of groups reduced rates of intergroup aggression

and group extinction (Fig. 3), but this effect was less pronounced
than in the SIS model framework.
Both disease models capture the pathogen tradeoffs between

virulence and between-group contact rate. For instance,
distemper-like infections (highly transmissible, moderately le-
thal, and immunizing) die out quickly, and although there are
many groups classified as infectious after an epidemic, they
primarily consist of individuals who survived earlier infection
with the pathogen (Figs. 3 and 4). A less-virulent pathogen may
not infect the entire population, but a few infectious individuals
remain in the population for much longer after the disease in-
troduction. In contrast, a mange-like infection (low transmission,
longer infectious period, and nonimmunizing) will persist for
much longer in the population at higher levels within groups.
Although it takes longer for the slower-moving infections to
permeate the population, SIS infections were more likely than
SIR infections to maintain a stable endemic equilibrium in our
model runs. Importantly, the transmission threshold for invasion
is higher for socially structured SIS and SIR models compared
with similar homogeneous models (SI Appendix, Fig. S2). Ho-
mogeneous models always result in higher prevalence and
seroprevalence than the structured metapopulation models
across a wide range of viable transmission values.
The Allee effect has an interesting interaction with the pres-

ence of pathogens: infected groups decrease in size because of
pathogen-induced mortality, and these smaller groups exhibit a
more pronounced Allee effect than larger uninfected groups

Fig. 3. Cross-sectional diagrams of disease model outputs compared to models run without pathogens (“control,” green), producing relative differences in
the number of groups (left column) and mean group size (right column). One parameter was increased incrementally—recovery rate (σ) in SIS models (top
row) and within-group transmission (βW) in SIR models (bottom row). Groups and individuals were compartmentalized into susceptible (blue), infected (red),
or recovered (purple). Individuals are also denoted by their group compartmentalization: susceptible groups (circle), infected groups (x), and recovered groups
(triangle) (e.g., recovered individuals in an infected group are a purple x). Parameter values in A and B reflect a mange-like infection (βW = 8, βB = 1.5, α = 0.2,
σ = 2, e = 0.001, f = 0.01, a = 0.01, and A = 0), while in C and D reflect a distemper-like infection (βW = 35, βB = 15, α = 1, σ = 12, φ = 0.25, e = 0.001, f = 0.01, and
a = 0.01). The vertical dashed lines denote pathogen persistence (left = does not persist, right = persistence at year 50).
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(i.e., the probability of infected groups going extinct increases).
Concomitantly, this slows the rate at which groups grow and
recover from the presence of the infection. This is seen more
clearly in the SIS case than for the SIR case, so we have only
illustrated it for the SIS pathogen. In Fig. 5, we have compared
the structure of healthy and diseased populations with Allee
effects operating at different group sizes. These results suggest
that the interaction between pathogens and Allee effects is
subtle—they increase the chance that infected groups will go
extinct and reduce population size (and number of groups), but
this will also reduce the pathogen’s ability to persist in the
population as groups containing the pathogen go extinct much
more quickly than in the absence of Allee effects. If Allee effects
only manifest themselves strongly during disease outbreaks, then
field studies may tend to attribute the cause of group extinction
or population decline to the pathogen, rather than its interaction
with the Allee effect. This may be the case with recent studies of
wild dogs (52).

Discussion
The organization of a host population into modular social groups
alters the interactions between pathogens and their hosts. This is
driven by the tensions between within- and between-group
transmission: within a group, the pathogen spreads rapidly
causing mortality and a decrease in group size, but it only
transmits between groups when there is contact, such as during a
boundary confrontation. This organization also constrains the
vital dynamics of the pathogen that determine its transmission

and virulence rates (6, 8, 53). The models presented here capture
many of the important consequences of social organization
within a framework that minimizes details while allowing for the
investigation of key, dynamical features of the social system. In

Fig. 4. A panel plot displaying the dynamics of (A, C) SIS and (B, D) SIR pathogens. The top row zooms in on dynamics following initial pathogen introduction
(years 1 through 5), and the bottom row displays long-term dynamics (years 1 through 50). Total population counts (black), mean number of groups (thick
lines), and mean number of individuals within each group (thin lines) are shown through time, with different colors representing the three disease com-
partments: susceptible, infected, recovered. Parameters selected represent (A, C) mange-like (βW = 8, βB = 1.5, α = 0.2, σ = 2, e = 0.001, f = 0.05, a = 0.05, and
A = 0) and (B, D) distemper-like pathogens (βW = 30, βB = 8, α = 2, σ = 12, φ = 0.25, e = 0.001, f = 0.05, and a = 0.05).

Fig. 5. Equilibrium mean group size (dashes) and number of groups (lines)
for susceptible and infected groups using the SIS model for a moderately
virulent pathogen, including Allee effects (susceptible groups = blue, in-
fected groups = red, susceptibles in infected groups = purple, and infected
group size = gold). These are compared to the model without a pathogen
(“control,” green) at the same Allee values (βW = 30, βB = 9, α = 1, σ = 8, e =
0.001, f = 0.01, and a = 0.01).
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this system, the process of group fission regulates mean group
size, while the number of groups in a population is regulated by
intergroup aggression and density dependent group extinction
rates. Group turnover, specifically the number of breeding fe-
males and their offspring production, is important in shaping
group and population size. The inclusion of pathogens into this
structure reduced population size mainly through a reduction in
the number of groups. Our models provide a foundation for
exploring relationships for many social species with varying levels
of social complexity (Table 1). Their dynamics correspond well with
empirical data collected for the Yellowstone wolf population
(Fig. 1C).
From an epidemiological perspective, an important finding is

that the three scales of interest—population, metapopulation,
and within groups—had strikingly different prevalences: low
prevalence at the population level can readily mask high levels of
prevalence within infected groups and intermediate numbers of
groups containing infected individuals (Fig. 6). This finding
emphasizes the need for representative sampling in socially

structured populations where reported prevalence levels do not
often transcend scale (7, 54, 55). Wildlife researchers and man-
agers should sample from many groups in a population in order
to accurately depict disease prevalence. For social carnivores,
this roughly equates to sampling across a larger area, and ex-
plicitly recognizing that population level prevalence tends to be
lower than the number of groups infected, and the level of in-
fection experienced by individuals in infected groups. This issue
should be a central consideration when wildlife disease biologists
are analyzing and interpreting prevalence and seroprevalence
data (56–58).
The central strength of this modeling approach is the ability to

assess the relative impact of a pathogen on group size when we
consider pathogens with different transmission coefficients, vir-
ulence, and infectious periods. Here, we note that the presence
of pathogens always reduces the size of the host population—this
is mainly driven by a reduction in the number of groups. A re-
duction in the average size of infected groups can also occur
when infections are chronic and prolonged, but this effect is less
pronounced for an SIR pathogen, such as distemper, than for an
SIS pathogen, such as mange. As the number of groups in-
creases, intergroup aggression and group extinction play an im-
portant role in determining the number of social groups and
average group size. If disease reduces the number of social
groups, there will be less intergroup aggression (the dominant
form of density dependence in wolves and other social carni-
vores), thus groups without infected individuals may grow larger
(Fig. 3). In contrast, infected groups are smaller in size in the
presence of a pathogen, and in fact, Allee effects are at their
strongest when partially masked by the presence of a pathogen.
The underlying size structure of the groups and the rates at

which they interact constrains the characteristics of pathogens
that can establish and persist in these populations (6, 8, 12). Our
framework is partially constrained by the assumption that all
groups are the same size and thus exhibit similar dynamics; this
overlooks stochastic differences between groups that may have
important consequences that could only be explored in a more
detailed simulation framework. While differences among groups
is likely more realistic, it would require the tracking of individual
groups and, therefore, greater model complexity at the cost of
loss of generality. The assumption that all groups become in-
fected at the same rate can be modified by expanding the
framework to consider groups of two different sizes or by adding
spatial structure to the models so that each group can only infect
its neighbors (such as in Eq. 2).
Obviously, many additional details could be included into the

core model structure, particularly the presence of two sexes—
males with a greater tendency to disperse and form transient
subpopulations could readily be added. Similarly, age structure
could be added to the within-group structure, and together these
additions would capture specific and important details of social
behavior that could be examined in the context of different social
species. If we were considering the fission–fusion societies of
primates or elephants, then e, a, and f could become sinusoidal
functions that oscillate with the availability of seasonal resources.
Similarly, we could consider the costs and benefits of group living
within an adaptive model framework. The present model struc-
ture is well suited to these alterations and we will explore these
extensions more fully in the future.
We illustrate one way to address increasing social complexity

by adding an Allee effect, which often arises in social groups
when birth rates decline as group size falls below a critical
number of group members (59, 60). Allee effects have important
consequences across many species and populations (27, 28,
30–32). In Yellowstone wolves, the number of pups born per
breeding female declines in groups smaller than eight (26), which
may be detrimental in small populations (25). Living in a large
group may increase an individual’s likelihood of contracting a

Fig. 6. Maximum infection prevalence with respect to within-group trans-
mission rate (βW) at three scales: population (black), groups (red), and within
groups (blue) using the SIS (A) and SIR (B) models (βB = βW/4, α = 1, σ = 6, φ =
0.5, e = 0.001, f = 0.08, and a = 0.1). If the initial prevalence was the max-
imum prevalence (i.e., pathogen died out very quickly), maximum preva-
lence was set to zero; therefore, prevalence > 0 shows pathogen invasion.
We have used maximum prevalence rather than mean prevalence as the
pathogen either drives the host population extinct or dies out at extreme
transmission rates. In B, we included seroprevalence (dashes) as the sum of
all infected and recovered groups or individuals to represent current or
previous infections (i.e., we assume those who test seropositive include I and
R individuals whose serostatus would be indistinguishable).
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pathogen through high within-group contact rates, yet in some
cases, as group size increases, the costs of infection decrease for
infected individuals (4, 22). The latter “healthcare hypothesis”
describes an increase in survival rates for infected individuals
living in larger groups as the impact of the pathogen may be
reduced when group members assist by obtaining resources,
maintaining social status, removing ectoparasites, and providing
comfort (61–63). These are potentially important aspects of so-
cial living to incorporate mechanistically in the future.
Host population social organization cannot be ignored when

examining infectious disease dynamics. Our goal here was to
provide a general model, applicable to any social species, that
melds metapopulation and disease dynamics in a manner that
provides broad, testable, and general insights into the interac-
tions between social organization and disease. We think this
model could be used to provide insights into the dynamics of a
broad variety of host species, particularly as all parameters are
measurable from field data. This type of research may help in the
protection of endangered species by identifying the synergistic

relationship between Allee effects and pathogens while also
elucidating important and subtle interactions between host de-
mographics, social structure, and pathogen characteristics.

Data Availability. The CSV files and R code scripts data have
been deposited in Dryad (https://datadryad.org/stash/share/
ccIfMEUnp8yz43xYcG2XJR9q8zlIUnU8YtRbOYnBjyQ). All other
study data are included in the article and/or SI Appendix.
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